Effects of Electro-Acupuncture on Nerve Growth Factor and Ovarian Morphology in Rats with Experimentally Induced Polycystic Ovaries₁

Elisabet Stener-Victorin,[2,3] Thomas Lundeberg,[4] Urban Waldenström,[3] Luigi Manni,[5] Luigi Aloe,[5] Stefan Gunnarsson,[6] and Per Olof Janson[3]

Department of Obstetrics and Gynecology,[3] Göteborg University, SE-413 45 Goteborg, Sweden Department of Physiology and Pharmacology,[4] Karolinska Institutet, SE-164 01 Stockholm, Sweden, Institute of Neurobiology (CNR),[5] Rome, Italy Department of Evolutionary Biology,[6] SE-752 36 Uppsala, Sweden

ABSTRACT

Despite extensive research on the pathogenesis of polycystic ovary syndrome (PCOS), there is still disagreement on the underlying mechanisms. The rat model for experimentally induced polycystic ovaries (PCO)--produced by a single injection of estradiol valerate--has similarities with human PCOS, and both are associated with hyperactivity in the sympathetic nervous system. Nerve growth factor (NGF) is known to serve as a neurotrophin for both the sympathetic and the sensory nervous systems and to enhance the activity of catecholaminergic and possibly other neuron types. Electroacupuncture (EA) is known to reduce hyperactivity in the sympathetic nervous system. For these reasons, the model was used in the present study to investigate the effects of EA (12 treatments, approximately 25 min each, over 30 days) by analyzing NGF in the central nervous system and the endocrine organs, including the ovaries. The main findings in the present study were first, that significantly higher concentrations of NGF were found in the ovaries and the adrenal glands in the rats in the PCO model than in the control rats that were only injected with the vehicle (oil or NaCI). Second, that repeated EA treatments in PCO rats resulted in concentrations of NGF in the ovaries that were significantly lower than those in non-EA-treated PCO rats but were within a normal range that did not differ from those in the untreated oil and NaCl control groups. The results in the present study provide support for the theory that EA inhibits hyperactivity in the sympathetic nervous system.

Key Words: adrenal, central nervous system, follicular development, hypothalamus, ovary, ovulation, pituitary, stress